Skip to main content

#MakeoverMonday Week 5: Travel Trends

Today I decided to participate in Andy Kriebel's and Andy Cotgreave's #MakeoverMonday Tableau Challenge. I have been enjoying seeing this series progress the last few weeks. People have produced such interesting variations of the same data set (see the variety, here!). I particularly like this project for a few reasons:
  • It removes all the pre-viz steps such as data collection, cleaning, etc. and allows you to focus right in on best practices and design.
  • If you stick with suggested 1 hour time block, it makes participation less daunting.
  • It allows you to see what others in the community came up with for the same dataset. I have been finding myself having a-ha moments and really drawing inspiration...I might have an update to this with a makeover of my own incorporating all my favorite parts of others :)
  • By engaging with the community, it will encourage you to continue to participate and expand your skillset.
So why not give next week's #MakeoverMonday a go? Full details here!!!

Comments

  1. This comment has been removed by the author.

    ReplyDelete
  2. Great post and no doubt you have presented a very good information to us. I am very impressed with your work and looking forward to more posts like this.

    ReplyDelete
  3. This comment has been removed by the author.

    ReplyDelete

Post a Comment

Leave a comment!

Popular posts from this blog

Using Python for Sentiment Analysis in Tableau

This weeks Makeover Monday 's data set was the Top 100 Song's Lyrics. After just returning from Tableau's annual conference and being eager to try their new feature, TabPy , this seemed like the perfect opportunity to test it out. In this blog post, I'm going to offer a step-by-step guide on how I did this. If you haven't used Python before, have no fear - this is definitely achievable for novices - read on!  For some context before I begin, I have limited experience with Python. I recently completed a challenging but great course through edX that I'd highly recommend if you are looking for foundational knowledge -  Introduction to Computer Science and Programming Using Python . The syllabus included advanced Python including Classes and thinking about algorithmic complexity. However, to run the analysis I did, it would be helpful to look up and understand at a high level: basic for loops lists dictionaries importing libraries The libraries I ...

#MakeoverMonday: Data Science Degrees and Tile Maps

I have recently been experimenting with what I've seen being referred to as a tile map, grid map or periodic map. NPR did a great write up on traditional choropleth maps, cartograms and tile maps. Some awesome Tableau folks have also done great tutorials and published these non-traditional map types publically including Brittany Fong , Matt Chambers and Kris Ericson . There are definitely instances where this type of map enhances the data view or enables better flow and certainly some where it won't be suitable (for example, showing data at the county level among others - example ). I came into this field from a non-traditional background like many others. There's definitely an emergence of new or rebranded data science degree and certificate programs. I was excited when I came across Dan Murray's article on the Interworks Blog  that used data and an awesome tableau visualization to show programs throughout the U.S. Since I came across this at the same time tha...

Open Data Sets

A connection of mine recently shared a great resource with me for those of you who are aspiring data scientist or just love data. It's an open-source data science program that can be found here:  http://datasciencemasters.org/ . Check out this great data repository compiled by the project: Open Data List of Public Datasets  - user-curated DBpedia  - utilizing a large multi-domain ontology Public Data Sets on AWS  - common web crawl corpus, NASA satellite imagery, Human Genome, Google Book NGrams, Wikipedia Traffic, Million Song Dataset, Federal Reserve Economic Data, PubChem, more. Governmental Data Compendium of Governmental Open Data Sources Data.gov (USA) Africa Open Data US Census  - Population Estimates and Projections, Nonemployer Statistics and County Business Patterns, Economic Indicators Time Series, more. Non-Governmental Org Data The World Bank  - business regulation measures, company-level data in emerging markets, hous...