On Wednesday I had the pleasure of attending the annual one day Tapestry Conference for the first time. I was blown away by many things - the nearly equal representation of genders, the quality of thought presented by speakers, and the desire of attendees from many disciplines to experience the day together and improve, question, and share their practice. In an effort to synthesize my notes and reflect further I'm going to share my key takeaways from some of the speakers. While I know these bullets could never replace the richness of experiencing this live with carefully curated examples to enrich the takeaways, I hope that you find your own “aha” moments and questions arise. Lena Groeger News Apps Developer, ProPublica Data doesn't speak for itself - it reflects your thinking. Visualization are not neutral and one design rarely fits all realities. Sometimes it's harmful to reduce individual people to dots. Provide context to your visualization - e.g. f
This weeks Makeover Monday 's data set was the Top 100 Song's Lyrics. After just returning from Tableau's annual conference and being eager to try their new feature, TabPy , this seemed like the perfect opportunity to test it out. In this blog post, I'm going to offer a step-by-step guide on how I did this. If you haven't used Python before, have no fear - this is definitely achievable for novices - read on! For some context before I begin, I have limited experience with Python. I recently completed a challenging but great course through edX that I'd highly recommend if you are looking for foundational knowledge - Introduction to Computer Science and Programming Using Python . The syllabus included advanced Python including Classes and thinking about algorithmic complexity. However, to run the analysis I did, it would be helpful to look up and understand at a high level: basic for loops lists dictionaries importing libraries The libraries I